
©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Understanding Java

Garbage Collection

A Shallow Dive into the Deep End of the JVM

Matt Schuetze, Director of Product Management

Azul Systems

A presentation to the Philadelphia JUG

April 14, 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

This Talk’s Purpose / Goals

As billed, this talk begins with OOMEs.

But really this talk is focused on GC education

This is a talk about how the “GC machine” works

Purpose: Once you understand how it works, you can

use your own brain...

You’ll learn just enough to be dangerous...

The “Azul makes the world’s greatest GC” stuff will only

come at the end, I promise...

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

About Azul Systems
We deal with Java performance issues on a daily

basis

Our solutions focus on consistent response time under load

We enable practical, full use of hardware resources

As a result, we often help characterize problems

In many/most cases, it’s not the database, app, or

network - it’s the JVM, or the system under it…

GC Pauses, OS or Virtualization “hiccups”, swapping, etc.

We use and provide simple tools to help discover

what’s going on in a JVM and the underlying

platform

Focus on measuring JVM/Platform behavior with your app

Non-intrusive, no code changes, easy to add

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

About Azul

We make scalable Virtual

Machines

Have built “whatever it takes

to get job done” since 2002

3 generations of custom SMP

Multi-core HW (Vega)

Now Pure software for

commodity x86 (Zing)

“Industry firsts” in Garbage

collection, elastic memory,

Java virtualization, memory

scale

Vega

C4

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

High level agenda

What is an OOME and why does it hurt so good?

GC fundamentals and key mechanisms

Some GC terminology & metrics

Classifying current commercially available collectors

Why Stop-The-World is a problem

The C4 collector: What a solution to STW looks like...

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

March PhillyJUG: Claim 1

• Java is Slow!

• Until Hotspot kicks in, JVM is an interpreter

○ And even Hotspot can’t match hand-tuned libraries

• Startup loads lots of classes

○ Don’t use Spring for a command-line filter app

• GC can create inconvenient pauses

http://www.kdgregory.com/misc/presentations/kdgregory-com-presentation-JVM_Internals.pdf

--Keith Gregory

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

March PhillyJUG: Claim 2
• Java Uses Too Much Memory!

• Don’t confuse virtual and resident memory

○ JVM will reserve max heap from OS

○ OS will assign physical memory as needed

• Memory is under $15/Gb

• But that isn’t a license to go wild

○ Large heaps == lots of garbage when collector runs

○ Over-committing can lead to big problems

http://www.kdgregory.com/misc/presentations/kdgregory-com-presentation-JVM_Internals.pdf

--Keith Gregory

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

OOMEs: the Usual Suspects

• There actually four categories of memory issues with similar and overlapping

symptoms, but varied causes and solutions:

• Performance: usually associated with excessive object creation and deletion, long

delays in garbage collection, excessive operating system page swapping, and more.

• Resource constraints: occurs when there’s either to little memory available or your

memory is too fragmented to allocate a large object—this can be native or, more

commonly, Java heap-related.

• Java heap leaks: the classic memory leak, in which Java objects are continuously

created without being released. This is usually caused by latent object references.

• Native memory leaks: associated with any continuously growing memory utilization

that is outside the Java heap, such as allocations made by JNI code, drivers or even

JVM allocations.

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Out of Memory Exception
• Why didn’t my app throw an OutOfMemoryError?

• Posted by kcpeppe on January 8, 2014 at 8:19 AM PST

• Every once in a while I run into someone that has a JVM

that is running back to back collections and yet the heap is

still almost full after each attempt! When they discover that

their problem is related to the JVM not having enough

memory they often ask the question, why didn't the JVM

throw an OutOfMemoryError? After all my application is

not making any forward progress and the reason is Java

heap is almost completely exhausted.

https://weblogs.java.net/blog/kcpeppe

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Empty memory

and CPU/throughput

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

100%

CPU%

Heap size
Live set

Heap size vs. GC

CPU %

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Two Intuitive limits

If we had exactly 1 byte of empty memory at all times,

the collector would have to work “very hard”, and GC

would take 100% of the CPU time

If we had infinite empty memory, we would never have to

collect, and GC would take 0% of the CPU time

GC CPU % will follow a rough 1/x curve between these

two limit points, dropping as the amount of memory

increases.

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Empty memory needs
(empty memory == CPU power)

The amount of empty memory in the heap is the

dominant factor controlling the amount of GC work

The amount of memory recovered per cycle is equal to

the amount of unused memory (heap size - live set)

The collector has to perform a GC cycle when the empty

memory runs out

The efficiency of collectors that pause for sweeping

doubles with every doubling of the empty memory

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

What empty memory controls

Empty memory controls efficiency (amount of collector

work needed per amount of application work performed)

Empty memory controls the frequency of pauses (if the

collector performs any Stop-the-world operations)

Empty memory DOES NOT control pause times (only

their frequency)

In collectors that pause for sweeping, more empty

memory means less frequent but LARGER pauses

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Is GC still a real problem?

“The one big challenge left

for Java on performance is

containing pause times.

Latency jitter is the only

reason to ever use

other languages inside

Twitter.”

--Adam Messinger,

CTO of Twitter

Citation: Oracle Java 8

global launch video,

March 25, 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

GC behavior of a JVM with little heap tuning
-Xms1024m -Xmx1024m -XX:NewSize=200m -XX:MaxNewSize=200m

New generation GC

pauses on average

occurred every 6

seconds and lasted

less than 50

milliseconds.

Any single pause is

unnoticeable to the

users waiting for the

server’s response.

Old generation pauses

on average occurred

less than once per

hour but lasted as much

as almost 8 seconds on

average with a single

outlier even reaching 19

seconds.
Many Old Generation Full GC (the grey

lines) Blue = Heap occupancy

Heap used over a period of about 25 hours:

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Memory use

• How many of you use heap sizes of:

• more than ½ GB?

• more than 1 GB?

• more than 2 GB?

• more than 4 GB?

• more than 10 GB?

• more than 20 GB?

• more than 50 GB?

• more than 100 GB?

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Why should you understand
(at least a little) how GC works?

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Much of what People seem to “know”

about Garbage Collection is wrong

In many cases, it’s much better than you may think

GC is extremely efficient. Much more so that malloc()

Dead objects cost nothing to collect

GC will find all the dead objects (including cyclic graphs)

...

In many cases, it’s much worse than you may think

Yes, it really does stop for ~1 sec per live GB

No, GC does not mean you can’t have memory leaks

No, those pauses you eliminated from your 20 minute test are not

gone

...

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Trying to solve GC problems in application

architecture is like throwing knives

You probably shouldn’t do it blindfolded

It takes practice to do it well without hurting people

You can get very good at it, but do you really want to?

Will all the code you leverage be as good as yours?

Examples of “GC friendly” techniques:

Object pooling

Off heap storage

Distributed heaps

...

(In most cases, you end up building your own garbage collector)

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Some GC Terminology

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

A Concurrent Collector performs garbage collection work

concurrently with the application’s own execution

 A Parallel Collector uses multiple CPUs to perform

garbage collection

Classifying a collector’s operation

An Incremental collector performs a garbage collection

operation or phase as a series of smaller discrete

operations with (potentially long) gaps in between

A Stop-the-World collector performs garbage collection

while the application is completely stopped

Mostly means sometimes it isn’t (usually means a

different fall back mechanism exists)

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Compact

Over time, heap will get “swiss cheesed”: contiguous

dead space between objects may not be large enough

to fit new objects (aka “fragmentation”)

Compaction moves live objects together to reclaim

contiguous empty space (aka “relocate”)

Compaction has to correct all object references to

point to new object locations (aka “remap”)

Remap scan must cover all references that could

possibly point to relocated objects

Note: work is generally linear to “live set”

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Copy

A copying collector moves all lives objects from a

“from” space to a “to” space & reclaims “from” space

At start of copy, all objects are in “from” space and all

references point to “from” space.

Start from “root” references, copy any reachable

object to “to” space, correcting references as we go

At end of copy, all objects are in “to” space, and all

references point to “to” space

Note: work generally linear to “live set”

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Generational Collection

Weak Generational Hypothesis; “most objects die young”

Focus collection efforts on young generation:

Use a moving collector: work is linear to the live set

The live set in the young generation is a small % of the space

Promote objects that live long enough to older generations

Only collect older generations as they fill up

“Generational filter” reduces rate of allocation into older generations

Tends to be (order of magnitude) more efficient

Great way to keep up with high allocation rate

Practical necessity for keeping up with processor throughput

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Why Generational Garbage Collection

Here is an example of such data. Y axis = number of bytes

allocated; X access = number of bytes allocated over time

Having to mark and compact all

the objects in a JVM is

inefficient. As more and more

objects are allocated, the list of

objects grows and grows

leading to longer and longer

garbage collection time.

However, empirical analysis of

applications has shown that

most objects are short lived.

This is called the ‘weak

generational hypothesis’

As you can see, fewer and

fewer objects remain allocated

over time. In fact most objects

have a very short life as shown

by the higher values on the left

side of the graph
Bytes allocated over time

X = number of Bytes allocated; Y = number of Bytes allocated over time

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Mutator

Your program…

Parallel

Can use multiple CPUs

Concurrent

Runs concurrently with program

Pause

A time duration in which the

mutator is not running any code

Stop-The-World (STW)

Something that is done in a pause

Monolithic Stop-The-World

Something that must be done in it’s

entirety in a single pause

Useful terms for discussing garbage

collection

Generational

Collects young objects and long lived

objects separately.

Promotion

Allocation into old generation

Marking

Finding all live objects

Sweeping

Locating the dead objects

Compaction

Defragments heapMoves objects in

memory. Remaps all affected references.

Frees contiguous memory regions

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Useful metrics for discussing garbage

collection

Cycle time
How long it takes the collector to free

up memory

 Marking time
How long it takes the collector to find all

live objects

 Sweep time
How long it takes to locate dead

objects

* Relevant for Mark-Sweep

 Compaction time
How long it takes to free up memory by

relocating objects

* Relevant for Mark-Compact

Heap population (aka Live set)
How much of your heap is alive

Allocation rate
How fast you allocate

Mutation rate
How fast your program updates

references in memory

Heap Shape
The shape of the live object graph

* Hard to quantify as a metric...

Object Lifetime
How long objects live

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Classifying common collectors

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

HotSpot™ ParallelGC
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Monolithic Stop-the-world Mark/Sweep/Compact OldGen

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

HotSpot™ ConcMarkSweepGC (aka CMS)
Collector mechanism classification

Monolithic Stop-the-world copying NewGen (ParNew)

Mostly Concurrent, non-compacting OldGen (CMS)

Mostly Concurrent marking

Mark concurrently while mutator is running

Track mutations in card marks

Revisit mutated cards (repeat as needed)

Stop-the-world to catch up on mutations, ref processing, etc.

Concurrent Sweeping

Does not Compact (maintains free list, does not move objects)

Fallback to Full Collection (Monolithic Stop the world).

Used for Compaction, etc.

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

HotSpot™ G1GC (aka “Garbage First”)
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Mostly Concurrent, OldGen marker

Mostly Concurrent marking

Stop-the-world to catch up on mutations, ref processing, etc.

Tracks inter-region relationships in remembered sets

Stop-the-world mostly incremental compacting old gen

Objective: “Avoid, as much as possible, having a Full GC…”

Compact sets of regions that can be scanned in limited time

Delay compaction of popular objects, popular regions

Fallback to Full Collection (Monolithic Stop the world).

Used for compacting popular objects, popular regions, etc.

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Delaying the inevitable

Some form of copying/compaction is inevitable in practice
And compacting anything requires scanning/fixing all references to it

Delay tactics focus on getting “easy empty space” first
This is the focus for the vast majority of GC tuning

Most objects die young [Generational]
So collect young objects only, as much as possible. Hope for short STW.

But eventually, some old dead objects must be reclaimed

Most old dead space can be reclaimed without moving it
[e.g. CMS] track dead space in lists, and reuse it in place

But eventually, space gets fragmented, and needs to be moved

Much of the heap is not “popular” [e.g. G1, “Balanced”]
A non popular region will only be pointed to from a small % of the heap

So compact non-popular regions in short stop-the-world pauses

But eventually, popular objects and regions need to be compacted

Young generation pauses are only small because heaps are tiny

A 200GB heap will regularly have several GB of live young stuff…

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Monolithic-STW GC Problems

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

One way to deal with Monolithic-STW GC

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Another way to cope: “Creative Language”

“Guarantee a worst case of X msec, 99% of the time”

“Mostly” Concurrent, “Mostly” Incremental

• Translation: “Will at times exhibit long monolithic stop-

the-world pauses”

“Fairly Consistent”

• Translation: “Will sometimes show results well outside

this range”

“Typical pauses in the tens of milliseconds”

• Translation: “Some pauses are much longer than tens

of milliseconds”

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Actually measuring things

(e.g. jHiccup)

©2012 Azul Systems, Inc. ©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Getting past a monolithic-STW
Garbage Collection world

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

We need to solve the right problems

Scale is artificially limited by responsiveness

Responsiveness must be unlinked from scale:

Heap size, Live Set size, Allocation rate, Mutation rate

Transaction Rate, Concurrent users, Data set size, etc.

Responsiveness must be continually sustainable

Can’t ignore “rare” events

Eliminate all Stop-The-World Fallbacks

At modern server scales, any STW fall back is a failure

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

The problems that need solving
(areas where the state of the art needs improvement)

Robust Concurrent Marking

In the presence of high mutation and allocation rates

Cover modern runtime semantics (e.g. weak refs, lock deflation)

Compaction that is not monolithic-stop-the-world

E.g. stay responsive while compacting ¼ TB heaps

Must be robust: not just a tactic to delay STW compaction

[current “incremental STW” attempts fall short on robustness]

Young-Gen that is not monolithic-stop-the-world

Stay responsive while promoting multi-GB data spikes

Concurrent or “incremental STW” may both be ok

Surprisingly little work done in this specific area

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Azul’s “C4” Collector
Continuously Concurrent Compacting Collector

Concurrent guaranteed-single-pass marker

Oblivious to mutation rate

Concurrent ref (weak, soft, final) processing

Concurrent Compactor

Objects moved without stopping mutator

References remapped without stopping mutator

Can relocate entire generation (New, Old) in every GC cycle

Concurrent, compacting old generation

Concurrent, compacting new generation

No stop-the-world fallback

Always compacts, and always does so concurrently

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

 C4 algorithm highlights

Same core mechanism used for both generations

Concurrent Mark-Compact

A Loaded Value Barrier (LVB) is central to the algorithm

Every heap reference is verified as “sane” when loaded

“Non-sane” refs are caught and fixed in a self-healing barrier

Refs that have not yet been “marked through” are caught

Guaranteed single pass concurrent marker

Refs that point to relocated objects are caught

Lazily (and concurrently) remap refs, no hurry

Relocation and remapping are both concurrent

Uses “quick release” to recycle memory

Forwarding information is kept outside of object pages

Physical memory released immediately upon relocation

“Hand-over-hand” compaction without requiring empty memory

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

GC Tuning

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

GC Tuning – how many options?

45
Copyright Frank Pavageau

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Java GC tuning is “hard”…

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g

 -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC

 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0

 -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled

 -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12

 -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M

-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy

-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled

-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled

-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly

-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

The complete guide to

Zing GC tuning

• java -Xmx40g

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Fun with jHiccup

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Optional SLA

plotting

Max Time per

interval

Hiccup duration

at percentile

levels

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

Unsustainable

Throughout

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Instance capacity test: “Fat Portal”
HotSpot CMS: Peaks at ~ 3GB / 45 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Instance capacity test: “Fat Portal”
C4: still smooth @ 800 concurrent users

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

How is Azul’s Java Platform Different?
Same JVM standard -

Licensed JCK compliant JVM for JSE6 and JSE7. JSE 8 in flight.*

Derived from same base as Hotspot, fully Java compatible

passes Java Compatibility Kit (JCK) server-level compatibility (~53000 tests)

A different approach

Garbage is good!

Designed with insight that worst case must eventually happen

Unique values

Highly scalable … 100s GB with consistent low pause times – other JVMs will have longer

“stop-the-world” pauses in proportion to size of JVM and memory allocation rate

Elastic memory … insurance for JVMs to handle dynamic load – unlike other JVMs which

are rigidly tuned

Collects New Garbage and Old Garbage concurrently with running application threads …

there is no “stop-the-world” for GC purposes (you will only see extremely short pause times to

reach safepoints) – unlike other JVMs which will eventually stop-the-world.

Compacts Memory concurrently with your application threads running … Zing will move

objects without “stop-the-world” or single-threading – which is a major issue with other JVMs

Measuring pause times from FIRST thread stopped (unlike other JVMs)

Rich non-intrusive production visibility with ZVision and ZVRobot

WYTIWYG (What You Test Is What You Get)

* Zing for JSE8 in dev

with JCK 8 in QA as of

today’s talk

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

"We were originally designed for extremely large heaps, and

some people use us in huge-data-set situations – which is

why a typical 5GB or 10GB heap that challenges most JVMs

is a walk in the park for Zing"

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Some people have big problems to solve

in the big data world and Zing doesn’t

pause for GC

Tests were performed with varying live data set sizes,

and a 250GB heap:

55 GB:

• Zing: 35 milliseconds; Hotspot G1: 357 seconds

110 GB:

• Zing: 75 milliseconds; Hotspot G1: 225 seconds

215 GB:

• Zing: 20 milliseconds; Hotspot G1: 1,055 seconds

JavaOne 2012: Neil Ferguson, Causata:

CON4623 - Big RAM: How Java Developers Can Fully Exploit Massive Amounts of RAM

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4623
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4623
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4623
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4623

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

What you can expect (from Zing)

in the low latency world

 Assuming individual transaction work is “short” (on

the order of 1 msec), and assuming you don’t have

100s of runnable threads competing for 10 cores...

 “Easily” get your application to < 10 msec worst case

 With some tuning, 2-3 msec worst case

 Can go to below 1 msec worst case...

May require heavy tuning/tweaking

Mileage WILL vary

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Oracle HotSpot (pure newgen) Zing

Low latency trading application

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Low latency - Drawn to scale

Oracle HotSpot (pure newgen) Zing

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Q & A
GC :
G. Tene, B. Iyengar and M. Wolf

C4: The Continuously Concurrent Compacting Collector

In Proceedings of the international symposium on Memory management,

ISMM’11, ACM, pages 79-88

Jones, Richard; Hosking, Antony; Moss, Eliot (25 July 2011).

The Garbage Collection Handbook: The Art of Automatic Memory

Management. CRC Press. ISBN 1420082795.

jHiccup:
http://www.azulsystems.com/dev_resources/jhiccup

http://www.azylsystems.com

©2014 Azul Systems, Inc. Presented at Philadelphia JUG, April 2014

Thanks for Attending

www.azulsystems.com

Grab a Shirt!

Take a card!

To contact the speaker email:
Matt Schuetze, Director of Product Management
mschuetze@azulsystems.com
Refer to PhillyJUG

http://www.azulsystems.com/

