The Dining Philosophers

Provide an online and offline venue for
software professionals to network

with each other on a professional and social basis.

Started 1n Shanghai 2006
e Tech talks

e Networking events
e http://www.diningphilosophers.net

http://www.diningphilosophers.net/

About Presenter

*Programming computers since age 10

] 0+ years of experience in computer industry
e Unix System administration
e Software development

*Graduated from Wharton, University of Penn
AW, By R K

*Enjoys learning languages(human and computer)

Groovy
The next generation of Java

Language {

Platform { JVM (executes bytecode) @

Grails

*Groovy/Java web framework
e Underneath uses Spring, Hibernate, and Sitemesh
e Borrows many 1deas Ruby on Rails
e Convention over configuration
 Different configuration for different environment
e Development
e Testing
e Production
e Scaffolding
e ActiveRecord
e Custom tag libs
e Extensive plugins
* Do not need to restart web server when making changes

eLive Grails demo with Intelli]J in 20minutes
* A blog

Dynamic vs Static typing

e Statically typed languages (for example: Java, C++)
e Compiler checks all the type at compile time
 Certain class of errors can be caught automatically at compile time

*Dynamically typed languages(for example: Python, Ruby)
e The runtime checks the type at runtime
e The type of a variable can change
ea=1
a="abc”

*Which is better? %

*Groovy 1s both dynamically and statically typed

b

“Ceremony vs Essence’

- Neal Ford
Haskel:
main = print("Hello World")
Java:
public HelloWorld{

public static void main(String[] argv){
System.out.println(“Hello World!”);

j
h

Groovy:

println “Hello World”

[.ess 1s more ...

PrintFile.java:

import java.10.*;
class PrintFile{
public static void main(String[] args){
try {
FileReader reader = new FileReader(args[0]);
BufferedReader bReader = new BufferedReader(reader);
String line = null;
while((line = bReader.readLine())!=null){
System.out.printin(line);
h
+catch (Exception ¢){
e.printStackTrace();

h
b
j

PrintFile.groovy:

def fileName = args[0]

new File(fileName).eachLine{ println it} Less iS more

But not always

Perl

print pack"C*" split/AD+/,"echo "16ill*o\U@ {$/=%z;[(pop,pop,unpack"H*",<>)] }\
EsMsKsNO[IN*11K[d2%Sa2/d0<X+d*IMLa"*IN%0]dsXx++IMIN/dsM0<J]dsJxp"|
dc’

Outline

1 . Function
2.Closures
3.Classes
4 .Interfaces
5.Control structures
6.Data types: arrays, lists, ranges, maps, GString
7.Comparison with Java
8.Builders
9.Processing XML
10.DSL

1. XML

e Swing

Function

eJava only has free standing nouns (% 18) via classes but no free standing

verbs(317).

e Java methods/verbs are trapped inside of classes

«functions/methods are independent of classes in Groovy but functions are
not first class types.

def sayHello(name){
“hello “+name
h

*Return types , parameter types are optional
[ast statement evaluated 1s returned

Closure

*Closures are free standing verbs like functions
*Closures can be passed around as parameters

def ¢ = { “hello world” }
c()

def c2 = {name-> “hello $name”}
c2(“world”)

Closure

*Closures have an environment closed over it

* Hence the name
 Variables 1n that environment survive invocation of the closure
e Think of closures as functions with bounded variables

def foo(){
inti=0
return { 1++}

b

X = f00()
println "x="+x()

y = foo()
println "y="+y()

ntrintln "x="+x()

Closure vs Objects

*Object 1s data/state with method wrapped around it
*Closure are methods with data/state wrapped around it

Methods

(behavior)

Functions vs Closures

Groovy 1s Java

*09% of Java language is valid Groovy code.
e Rename .java to .groovy will work 99% of the time

eUnlike other languages that run on the JVM (Ruby,Python)
Groovy objects map 1-to-1 to Java objects

Class

class Employee{
String lastName
def firstName
int age

h

Creating new object:
edef e = new Employee()

'named parameters:
Employee €2 = new Employee(lastName: “Su”,
firstName: “Zhong Shan”)

Class

eSimilar to Java classes

*Fields are by default private

*Getter/Setter automatically generated for fields
def e = new Employee(firstName:”john”, lastName: “doe”)
¢.firstName ==> e.getFirstName()
e.firstName = “jane” ==> e.setFirstName(“jane”)

Interface

*Groovy interfaces are same as Java interfaces

*Groovy way of implementing interfaces
e Interface with single method
e Interface with multiple method using a map

Data structures

java.util.List
e def family = ['mom’,'dad','brother’,'sister','uncle']
assert family instanceof List == true
e << append operator
e family<<’son”
e * operator
e family*.toUpperCase()
java.util.Map
» def ages = ['mom':50, dad: 58, sister: 20, uncle: 50]
assert ages instanceof Map == true
eRange (java.util.List)

defr=20..5
defr=0.<5
*GString

e Can contain arbitary expresions
e “The current time is $ {new Date()}”
e Can span multi-lines

Loops

*Groovy only supports Java's while and for loops.

For

e Like Java:
for int1=0;1<35; ++1)
println 1

e Simplier and more powerful than Java's for loop
e Works with arrays, maps, list and collection
for(11n 0..5)

println 1

def people = ['mom’,'dad’,'brother’,'sister']
for(p in people)
println p

Loops

def ages = [john': 10, jane: 20, 'mike': 30]
for(a 1n ages){

println a

h

for(s 1n 'abedefghyjklmnopqrstuvwxyz') {
println s

b

Processing XML

e XmlSluper
*GPath
e Similar to Xpath but used to navigate object graph

Builders

eUseful for building tree structure
« HTML/XML
e Swing GUI

e XML builder
e demo

*Swing Builder
e demo

Meta programming

eJava's reflection API (java.lang.reflect.*) too complex
*Every Groovy class has a Metaclass
e Query
String.metaClass.methods.each {println it}
String.metaClass.methods.findAll {it.name.startsWith("to")}

e Dynamically add methods

String.metaClass.foobar = { println “foobar”}
*demostrate swapCase example

* Intercept
* Override invokeMethod
e Can implment Aspect Oriented Programming (AOP)

Chinese-English

chin pin goods; merchandise; product

she hui society

she qii community

xu ni fictitious; theoretical; virtual

wén hua culture; civilization; cultural

su yulocal saying; idiom

chéng yti proverb; idiom

bén zhi essence; nature; innate character; intrinsic quality
yi shiceremony

Ji€ X1 to analyze; to resolve; to parse

lingyu domain; sphere; field; territory; area

jie mian interface

jido shou jia scaffolding

zhl zi bamboo

jian she to build; to construct; construction; constructive
kuang jia framework

jila gou infrastructure; architecture; framework

feijing waste brain power

shu ju ki database

shi xing (V) try; test out sth

